Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Federated learning collaboratively trains a neural network on a global server, where each local client receives the current global model weights and sends back parameter updates (gradients) based on its local private data. The process of sending these model updates may leak client’s private data information. Existing gradient inversion attacks can exploit this vulnerability to recover private training instances from a client’s gradient vectors. Recently, researchers have proposed advanced gradient inversion techniques that existing defenses struggle to handle effectively. In this work, we present a novel defense tailored for large neural network models. Our defense capitalizes on the high dimensionality of the model parameters to perturb gradients within a subspace orthogonal to the original gradient. By leveraging cold posteriors over orthogonal subspaces, our defense implements a refined gradient update mechanism. This enables the selection of an optimal gradient that not only safeguards against gradient inversion attacks but also maintains model utility. We conduct comprehensive experiments across three different datasets and evaluate our defense against various state-of-the-art attacks and defenses. Code is available at https://censor-gradient.github.io.more » « lessFree, publicly-accessible full text available February 24, 2026
-
Fully Homomorphic Encryption (FHE) presents a paradigm-shifting framework for performing computations on encrypted data, offering revolutionary implications for privacy-preserving technologies. This paper introduces a novel hardware implementation of scheme switching between two leading FHE schemes targeting different computational needs, i.e., arithmetic HE scheme CKKS, and Boolean HE scheme FHEW. The proposed architecture facilitates dynamic switching between the schemes with improved throughput and latency compared to the software baseline. The proposed architecture computation modules support scheme switching operations involving coefficient conversion, modular switching, and key switching. We also optimize the hardware designs for the pre-processing and post-processing blocks, involving key generation, encryption, and decryption. The effectiveness of our proposed design is verified on the Xilinx U280 Datacenter Acceleration FPGA. We demonstrate that the proposed scheme switching accelerator yields a 365× performance improvement over the software counterpart.more » « less
-
Homomorphic encryption enables computations on the ciphertext to preserve data privacy. However, its practical deployment has been hindered by the significant computational overhead compared to the plaintext computations. In response to this challenge, we present HERMES, a novel hardware acceleration system designed to explore the computation flow of the CKKS homomorphic encryption bootstrapping process. Among the major contributions of our proposed architecture, we first analyze the properties of the CKKS computation data flow and propose a new scheduling strategy by partitioning the computation modules into general-purpose and special-purpose modular computation modules to allow smaller resource consumption and flexible scheduling. The computation modules are also reconfigurable to reduce the memory access overhead during the intermediate computation. We also optimize the CKKS computation dataflow to improve the regularity with reduced control overhead.more » « less
-
High development velocity is critical for modern systems. This is especially true for Linux file systems which are seeing increased pressure from new storage devices and new demands on storage systems. However, high velocity Linux kernel development is challenging due to the ease of introducing bugs, the difficulty of testing and debugging, and the lack of support for redeployment without service disruption. Existing approaches to high-velocity development of file systems for Linux have major downsides, such as the high performance penalty for FUSE file systems, slowing the deployment cycle for new file system functionality. We propose Bento, a framework for high velocity development of Linux kernel file systems. It enables file systems written in safe Rust to be installed in the Linux kernel, with errors largely sandboxed to the file system. Bento file systems can be replaced with no disruption to running applications, allowing daily or weekly upgrades in a cloud server setting. Bento also supports userspace debugging. We implement a simple file system using Bento and show that it performs similarly to VFS-native ext4 on a variety of benchmarks and outperforms a FUSE version by 7x on 'git clone'. We also show that we can dynamically add file provenance tracking to a running kernel file system with only 15ms of service interruption.more » « less
-
null (Ed.)High development velocity is critical for modern systems. This is especially true for Linux file systems which are seeing increased pressure from new storage devices and new demands on storage systems. However, high velocity Linux kernel development is challenging due to the ease of introducing bugs, the difficulty of testing and debugging, and the lack of support for redeployment without service disruption. Existing approaches to high-velocity development of file systems for Linux have major downsides, such as the high performance penalty for FUSE file systems, slowing the deployment cycle for new file system functionality. We propose Bento, a framework for high velocity development of Linux kernel file systems. It enables file systems written in safe Rust to be installed in the Linux kernel, with errors largely sandboxed to the file system. Bento file systems can be replaced with no disruption to running applications, allowing daily or weekly upgrades in a cloud server setting. Bento also supports userspace debugging. We implement a simple file system using Bento and show that it performs similarly to VFS-native ext4 on a variety of benchmarks and outperforms a FUSE version by 7x on 'git clone'. We also show that we can dynamically add file provenance tracking to a running kernel file system with only 15ms of service interruption.more » « less
An official website of the United States government

Full Text Available